Wireless Data Transmission – Schematics

The transmitter unit must be constructed in such a way that a laser diode may be powered on and off in order to send the previously mentioned high/low states. For that reason, the circuit consists of a power circuit, which utilizes an NPN Bipolar Junction Transistor as a current switch. This means that depending on the applied voltage, the Transistor will allow or prevent current from flowing to the laser diode, effectively allowing a microcontroller to turn the laser diode on and off. An accompanying program is then written to allow the laser diode to transmit the data bits of ASCII characters received via serial link from host device and the transmitting microcontroller. The user simply enters whichever ASCII characters they desire to transmit. The microcontroller interrupts on any given serial event and immediately begins transmitting the character received.

The receiver unit was constructed using a Wheatstone Bridge circuit. The Wheatstone Bridge is a resistive circuit. Therefore, resistors and resistive sensors, such as photoresistors, make up each branch of the circuit. R2 and Rx in the circuit are similar photoresistors in order to allow for automatic adjustment to dynamic ambient light conditions. The versatility and relative accuracy of the Wheatstone Bridge allow for the photoresistors, which change resistance inversely with the amount of light shined on them, to change the overall circuit resistance allowing obvious high and low states to develop. These can then be interpreted by a Microcontroller such as the Xplained Mini Board with the appropriate software.