Fun Box #1

In starting this project we wanted to achieve a higher learning of smart controls for the business and home. The Fun Box we developed had 3 separate stations of controls. The first station consisted of a temperature sensor that would activate a fan once a desired temperature was sensed. The second controls consisted of a LCD screen and two push buttons. The screen was a gaming console with preprogrammed trivia questions and answers. The last station of controls consisted of an optic sensor and a light.  It was to represent the auto light controls that many commercial applications and some residential home incorporate today for energy efficiency.

The controls and micro controllers we used were interesting to learn about. The mentioned optic sensor was an HC-SR04 ultrasonic Sensor. It used sonar technology to determine distance to an object similar to how bats perceive distance. It’s ranges were from 1” to 13 feet depending on how we programmed it. To better explain though the sensor sends out sound waves from the transmitter and when these sound waves bounce back after making contact with an object; the distance is easily calculated by the amount of time that process happens. The next control we used was the DHT11 Temperature and Humidity Sensor. This sensor ranges from -32 to 122 degrees Fahrenheit.  It can be used for a variety of reasons depending on the programming application. The other controls used were a fan(DC motor acting as a fan), an LCD screen, 2 Arduino Uno microcontrollers, and the AT mega 328PB microcontroller.

            The two arduinos were used to control the overall projects of game sensor and ultrasonic sensor. The AT Mega was used to control the fan and LED’s while the Ardunos were used for the brain of the temperature sensor. The Arduinos were originally used to communicate using Serial, but to simplify the process we used a simple IO port that would be high if the LED and motor needed to be turned on and low if they needed to be low.